当前位置:首页 > 新闻中心 > 电池知识 > 便携式可移动设备电池的供电策略

便携式可移动设备电池的供电策略

发布时间:2020-03-19 09:48:00  来源:杰富承锂电池厂家




随着人们的生活水平提高,电子设备在我们生活中的使用可谓是越来越多,而人们的生活也越来越里边电子设备。这里所说的电子设备不仅仅局限于我们日常使用的手机、相机等等,还包括所以平时我们使用到的可移动电子设备。

当然,所有的电子设备都需要供电,供电离不开电池。在日益普及的今天,选择何种电池和低功耗设计方案,已成为电池供电产品的开发能否取得成功的关键。由于当今半导体技术的发展比电池技术更加迅速,电源管理设计是使用户深切感受到产品优劣的关键所在。

除了安全性、成本和尺寸外,将电池的运行时间最大化并延长其使用寿命,对于电池供电应用的系统设计来说也是极其重要的。随着用于驱动便携式应用的电池技术不断增多,需要选择合适的方法来对可充电电池进行放电和充电。本文首先回顾适用于便携式应用的一般电池策略,然后将讨论采用当今集成解决方案的电源管理和电池管理电路设计。
 
目前使用最广泛的电池技术
 
电池技术可简单地分为两类:不可充电型和可充电型。不可充电电池在使用一次后即废弃,称为一次性电池。碱性电池是最常见的家用一次性电池。市面上也有碱性可充电电池,但不在本文的讨论范围内。典型碱性电池具有大约1.5V至1.65V的浮动电压,标称电压为1.2V,寿命结束时的电压为大约0.9V.单节碱性电池寿命结束时的电压可低至0.7V-0.8V,具体取决于负载电流。表1展示了一些常见的碱性电池配置。某些应用可采用多种配置,具体取决于产品外形、系统要求、可用解决方案和功耗预算。
 
例如,某种无线光电鼠标解决方案的工作电压范围是1.8V至3.2V.该鼠标使用2节串联配置的碱性电池便可正常工作,无需附加稳压电源。如果需要极其紧凑的鼠标设计,则2节AA/AAA碱性电池可能不适用。在这种情况下,可使用单节AA/AAA碱性电池来减少所占空间,但需要用升压转换器将电压升至1.8V.
 
碱性电池配置的比较
 
碱性电池配置的比较
 
可充电电池被认为是二次电池,每次使用后都可将电量尽可能恢复到原始状态,直至电池寿命结束。本文将以锂离子电池(Li-Ion)、锂聚合物电池(Li-Poly)和镍氢电池(NiMH)为例进行说明。镍氢电池是很好的碱性电池替代品,因为其外形和工作电压范围与碱性电池类似。传统镍氢电池的一个缺点是自放电率高(每月约20%,如表2所示),但有一家领先的电池制造商已克服了这一难关,其推出的镍氢电池系列在生产12个月后仍可保持至少85%的电容量。恢复镍氢电池的电量有简单且低成本的解决方案,但采用双重截止充电方法(通过充电电流和工作环境来指定)的嵌入式充电器将获得最优性能。双重截止充电方法结合了温度随时间升高和电压随时间降低(或不变)的特性。
 
电池化学性能的比较
 
电池化学性能的比较
 
锂离子电池目前被认为是成熟的电池技术,已广泛应用于移动电话和汽车等领域,因为其生产成本更低且性能更好。锂离子电池在质量和体积上的高能量密度使其适用于多种便携式应用。

设计合理的锂离子电池电源管理系统将延长电池使用寿命,并提高整个系统的可靠性。

 

电池供电应用中的集成电路
 
除了系统的主芯片组(如果含有的话)外,现代电池系统设计通常至少含有以下集成电路(integrated circuit,IC)中的一种:
 
一. 电源管理单元(Power Management Unit,PMU)
 
二. 单片机单元(Microcontroller Unit,MCU)
 
三. 电池管理单元(Battery Management Unit,BMU)
 
在选择稳压器时,很容易想到低压差稳压器(Low Dropout Regulator,LDO)。LDO的EMI问题最少,并且需要的外部元件数通常也最少。
 
POUT = VOUT x IOUT 公式1
PIN = VIN x (IOUT + IQ) 公式2
η = POUT / PIN = VOUT x IOUT / VIN x (IOUT + IQ) 公式3
IQ < IOUT时,
η = VOUT / VIN 公式4
 
LDO的效率
 
上图展示了LDO的效率。如果输出电流远大于静态电流(IQ),则可以忽略IQ.对于线性电路,输入电流等于输出电流与静态电流之和。因此,效率可简化为输出电压除以输入电压,如公式4所示。在电池供电设计中,IQ非常重要,因为待机时间将决定更换一次性电池的频率或对二次电池进行充电的频率。延长待机时间的方法之一是选择低IQ器件。
 
LDO效率与输出电流的关系

上图展示两种LDO(MCP1700与TC1017)的效率比较图。负载电流很小(如100μA)时,MCP1700 LDO的 效率比TC1017高25%.但是,在负载电流超过10 mA后,两种器件间的差异便不是很明显了,如图1所示。此结果也证明了公式4。

开关电容稳压器也称为电荷泵。此概念包括倍压器、分压器、负压发生器和直流-直流稳压器等。为了将电荷泵用作稳压器,器件通常先将电压倍增,然后将稳压后的电压送至所需输出。当输入电压与输出电压之间的差异较小时,转换过程中会有能量损失。因此,可使用多级电荷泵来帮助提高效率。

充电阶段完成后,传输阶段开始。此阶段将能量从快速电容传输至输出。MCP1256/7/8/9器件会自动在1.5X模式与2X模式之间切换。这决定了在能量传输至输出后,快速电容是改为并联(1.5X模式)还是保持串联(2X模式)。传输模式决定了闭合哪些开关以进行传输。

公式5用于计算1.5X工作模式下的效率,而公式6用于计算2X工作模式下的效率。图4显示了多级电荷泵的模式转换和特性。随着负载的增加,最小输入电压也会增加。因此,实际的最小输入电压与所需负载电流相关联。输入接近于输出时,1.5X工作模式可提高效率。

 

η = POUT / PIN = VOUT x IOUT / VIN x 1.5 x IOUT = V OUT / VIN x 1.5 公式5
η = POUT / PIN = VOUT x IOUT / VIN x 2 x IOUT = V OUT / VIN x 2 公式6
 
便携式移动终端在我们生活中虽然在逐渐的普遍并且还在继续不断发展,但是由于其供电设备的跟进比较有局限性,所以我们期待锂电池的发展有所突破!锂电池厂家能够在这些方面做更多的努力!

文章链接:http://jfc-battery.com/show-11-54-1.html
COPYRIGHT © 2011-2012 ALL Rights Reserved 深圳杰富承电子有限公司 版权所有 翻版必究
电话:86-755-2832 6758   邮箱836245631@qq.com  手机官网:wap.jfc-battery.com
地址:广东省深圳市龙岗区南联鹏达路123号  粤ICP备10233879号  百度地图 谷歌地图  技术支持:思途科技